Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Environ Int ; 187: 108707, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38692149

ABSTRACT

Currently, natural and urban ecosystems are affected by different types of atmospheric deposition, which can compromise the balance of the environment. Plastic pollution represents one of the major threats for biota, including lichens. Epiphytic lichens have value as bioindicators of environmental pollution, climate change, and anthropic impacts. In this study, we aim to investigate the lichen bioaccumulation of airborne microplastics along an anthropogenic pollution gradient. We sampled lichens from the Genera Cladonia and Xanthoria to highlight the effectiveness of lichens as tools for passive biomonitoring of microplastics. We chose three sites, a "natural site" in Altipiani di Arcinazzo, a "protected site" in Castelporziano Presidential estate and an "urban site" in the centre of Rome. Overall, we sampled 90 lichens, observed for external plastic entrapment, melt in oxygen peroxide and analysed for plastic entrapment. To validate the method, we calculated recovery rates of microplastics in lichen. Particularly, 253 MPs particles were detected across the 90 lichen samples: 97 % were fibers, and 3 % were fragments. A gradient in the number of microplastic fibers across the sites emerged, with increasing accumulation of microplastics from the natural site (n = 58) to the urban site (n = 116), with a direct relationship between the length and abundance of airborne microplastic fibers. Moreover, we detected the first evidences of airborne mesoplastics entrapped by lichens. On average, the natural site experienced the shortest fibre length and the centre of Rome the longest. No differences in microplastics accumulation emerged from the two genera. Our results indicated that lichens can effectively be used for passive biomonitoring of microplastic deposition. In this scenario, the role of lichens in entrapping microplastics and protecting pristine areas must be investigated. Furthermore, considering the impact that airborne microplastics can have on human health and the effectiveness of lichens as airborne microplastic bioindicators, their use is encouraged.

2.
Mar Pollut Bull ; 201: 116163, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401392

ABSTRACT

Coastal wetlands represent areas that can testify historical accumulation of litter. We analyzed the anthropogenic litter deposited on the channel bottom of a coastal wetland area that experienced water stress due to extreme summer dryness after about 20 years. We hypothesize that the litter accumulated in the different areas over the years reflects the different social user categories (i.e., fishermen, beach users, hunters) and exposure to meteo-marine events. Our findings highlight that historically accumulated litter is composed of plastics (78.8 %), clothes (8.9 %), and glass (4.9 %). Moreover, litter concentration averages 53.6 items/ha in the 8 sectors. The most found categories were common household items (25.4 %), diverse (professional and consumer) items (24.2 %), and food and beverages packaging (21.4 %). Finally, litter diversity indices and the Detrended Correspondence Analysis showed sector and litter type similarities. We reported for the first time the presence of litter accumulated for 20 years testifying non-more occurring recreational activities.


Subject(s)
Waste Products , Wetlands , Waste Products/analysis , Environmental Monitoring , Bathing Beaches , Plastics/analysis
3.
Sci Total Environ ; 904: 166756, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37659519

ABSTRACT

Anthropogenic litter accumulates along coasts worldwide. In addition to the flowing litter load, wind, sea currents, geomorphology and vegetation determine the distribution of litter trapped on the sandy coasts. Although some studies highlighted the role of dune plants in trapping marine litter, little is known about their efficiency as sinks and about the small-scale spatial distribution of litter across the dune area. Here, we explore these gaps by analysing six plant species widespread in Mediterranean coastal habitats, namely Echinophora spinosa, Limbarda crithmoides, Anthemis maritima, Pancratium maritimum, Thinopyrum junceum, and Salsola kali. The present study analyses for the first time the capture of litter by dune vegetation at a multi-species level, considering their morphological structure. Data on plastic accumulation on dune plants were compared with unvegetated control plots located at embryo-dune and foredune belts. We found that dunal plants mainly entrapped macrolitter (> 0.5 cm). Particularly, E. spinosa, L. crithmoides, A. maritima and P. maritimum mostly accumulated litter in the embryo dune while T. junceum and S. kali entrapped more in the foredune area. Moreover, beach litter was mainly blocked at the edge of the plant patches rather than in the core, highlighting the 'Plant-edge litter effect'. As A. maritima and S. kali entrapped respectively more litter in embryo and foredune habitats, these species could be used to monitor and recollect litter. In this light, our findings provide further insight into the role of dune plants in the beach litter dynamics, suppling useful information for beach clean-up actions.


Subject(s)
Ecosystem , Plants , Plastics/analysis , Poaceae , Sand
4.
Mar Pollut Bull ; 192: 115033, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37182241

ABSTRACT

The ability to retain anthropogenic marine litter by a halo-psammophilous plant formation dominated by a single prostrate species (Salsola kali) on a Sardinian beach was measured. We hypothesized that the anthropogenic litter (i) is trapped by plants to a greater extent than in control areas, and (ii) has more elongated size, mimicking the organic Posidonia wrack, largely occurring locally as 'banquettes'. Salsola kali patches show an apparently higher anthropogenic litter density than control sites without vegetation. Salsola kali plants trap litter items significantly longer and a larger number of size length categories than control plots. These effects may be due to the prostrate structure of the plant with small thorns at the apex. Also, litter entrapped by plants can interfere with the mechanisms of dune deposition and structuration, in turn affecting food chains by decreasing the availability of organic material for pedofauna.


Subject(s)
Alismatales , Chenopodiaceae , Salsola , Plants , Italy , Plastics , Waste Products/analysis , Environmental Monitoring , Bathing Beaches
5.
Mar Pollut Bull ; 187: 114585, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36638716

ABSTRACT

Coastal vegetation intercepts macroplastics and, consequently, it may represent a reservoir of anthropogenic litter and organic wrack. We aimed at investigating (i) the abundance variation of macrolitter from the beach to foredune and backdune (three cross-shore plots over 20 long-shore sectors) and (ii) the role of the halo-psammophilous plants and Phragmites australis reedbed in intercepting the macrolitter, respectively, in the foredunes and backdunes. The vegetation in the foredunes (mainly halo-psammophilous species) acted as a first interception belt for macrolitter, while the bigger litter reached the backdunes. Our results might be of great concern with implications for beach clean-ups - which must also be mainly focused in foredunes and backdunes, however warning operators in advance that they could damage the vegetation by trampling on.


Subject(s)
Plants , Poaceae , Plastics , Waste Products/analysis , Environmental Monitoring , Bathing Beaches
6.
Sci Total Environ ; 865: 161224, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36584957

ABSTRACT

Mountain rivers are typically seen as relatively pristine ecosystems, supporting numerous goods (e.g., water resources) for human populations living not only in the mountain regions but also downstream from them. However recent evidence suggests that mountain river valleys in populated areas can be substantially polluted by macroplastic (plastic item >25 mm). It is unknown how distinct characteristics of mountain rivers modulate macroplastic routes through them, which makes planning effective mitigation strategies difficult. To stimulate future works on this gap, we present a conceptual model of macroplastic transport pathways through mountain river. Based on this model, we formulate four hypotheses on macroplastic input, transport and mechanical degradation in mountain rivers. Then, we propose designs of field experiments that allow each hypothesis to be tested. We hypothesize that some natural characteristics of mountain river catchments can accelerate the input of improperly disposed macroplastic waste from the slope to the river. Further, we hypothesize that specific hydromorphological characteristics of mountain rivers (e.g., high flow velocity) accelerate the downstream transport rate of macroplastic and together with the presence of shallow water and coarse bed sediments it can accelerate mechanical degradation of macroplastic in river channels, accelerating secondary microplastic production. The above suggests that mountain rivers in populated areas can act as microplastic factories, which are able to produce more microplastic from the same amount of macroplastic waste inputted into them (in comparison to lowland rivers that have a different hydromorphology). The produced risks can not only affect mountain rivers but can also be transported downstream. The challenge for the future is how to manage the hypothesized risks, especially in mountain areas particularly exposed to plastic pollution due to waste management deficiencies, high tourism pressure, poor ecological awareness of the population and lack of uniform regional and global regulations for the problem.

7.
Sci Total Environ ; 857(Pt 3): 159713, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36302425

ABSTRACT

Rivers are undoubtedly the main pathway of waste dispersed in the environment that from land reaches oceans and seas increasing the amount of marine litter. Major cities are a great source of riverine litter as large urbanization can originate pressure on the integrated waste management resulting in litter entering the rivers. Within this study, we aim to investigate the dynamic of floating riverine macrolitter (items >2.5 cm) in the city of Rome before it reaches the sea by assessing the composition, amount, and seasonal trends of litter transported from the urban centre to the main river mouth of Tiber River. Visual surveys for a whole year (March 2021-February 2022) were conducted from two bridges, Scienza Bridge (in the city) and Scafa Bridge (at the main river mouth) and followed JRC/RIMMEL protocol for riverine litter monitoring. Overall, similar litter composition was observed from the city centre to the mouth with a prevalence of plastic material, mainly related to fragmentation process (i.e. plastic pieces) and single use items, mainly in food and beverage sectors. An extrapolated annual loading of 4 × 105 items/year was estimated at the main mouth of Tiber River. The litter flux seems to be influenced by the seasonal variability and hydrometeorological parameters. The frequency of size classes decreases with increasing size in both sites, and more than half of the recorded items were below 10 cm. Specific categories belonging to "other plastics" have been reported related to anti-Covid-19 behaviour such as face masks and beverage sector, e.g. bottle lids and rings. The main colour of plastics was white, suggesting weathering process of floating riverine litter. This study contributes to increasing knowledge of the origin, composition and spatiotemporal dynamics of riverine floating litter from the city and entering the sea.


Subject(s)
Rivers , Waste Products , Waste Products/analysis , Cities , Environmental Monitoring/methods , Plastics , Oceans and Seas
8.
Mar Pollut Bull ; 186: 114502, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36563602

ABSTRACT

Fishing lines, hooks and nets represent a sub-category of macro-litter potentially entrapping plover birds nesting on sandy beaches. Here, during a winter period, the accumulation pattern of both general beach litter and fishing lines, hooks and nets was analysed on four central Italy beaches. Despite the active monthly litter removal by clean-ups, there was not a decrease in its density during the winter period, due to the continuous accumulation by frequent winter storms. However, the entrapping litter was very low (<2.5 % of the general litter) and appeared directly correlated to the general litter density. Following a DPSIR approach, the general litter can act as an indirect pressure indicator (proxy) of the amount of entrapping litter. Therefore, an increase in general macro-litter should alarm those involved in the conservation of entanglement-sensitive bird species, such as plovers, suggesting that they should implement high-frequency clean-up activities aimed at removing it.


Subject(s)
Charadriiformes , Hunting , Animals , Bathing Beaches , Environmental Monitoring , Birds , Plastics , Waste Products/analysis
9.
Ecol Evol ; 12(9): e9332, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36177138

ABSTRACT

Old-growth forests host a rich diversity of invertebrate assemblages. Among them, saproxylic insects play a fundamental role in the nutrient cycle and ecosystem functioning. In these environments, coevolution between insect and plants have reached a stable equilibrium over millions of years. These delicate ecosystems are threatened mainly by habitat loss and fragmentation, and to date, they have to face the new "plastic threat." Plastics are widespread in all biomes and ecosystems accumulating throughout the years due to their low degradation rate. Once accumulated, large pieces of plastics can be degraded into smaller particles, the latter representing a great threat to biodiversity and ecosystem health, producing detrimental effects on biota. Since the effects of plastics on terrestrial systems remain largely unexplored, this study aimed at contributing to increasing the knowledge on the interaction between plastics and terrestrial biota. We put our emphasis on the novel and broad topic of plastic degradation by saproxylic beetle larvae, describing how they fragmented macroplastics into microplastics. To investigate whether saproxylic cetonid larvae could degrade expanded polystyrene, we performed an experiment. Thus, we put larvae collected in the field in an expanded polystyrene box. We observed that larvae dug in the thickness of the box fragmenting macroplastics into microplastics and producing a total of 3441 particles. Then, we removed the larvae from the EPS box and isolated them in glass jars filled with natural substrate. The substrate was checked for EPS microplastics previously ingested and now egested by larvae. Additionally, we pointed out that plastics remained attached to cetonid larvae setae, with a mean number of 30.7 ± 12.5 items. Although preliminary, our results highlighted that microplastics attached to saproxylic cetonid larvae might be transported into habitats and transferred along the food web. In conclusion, plastic pollution might affect vulnerable species and ecosystem services representing a risk also for human health.

10.
Environ Sci Pollut Res Int ; 29(36): 55293-55301, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35665886

ABSTRACT

Anthropogenic plastic litter is widespread in all environments, with particular emphasis on aquatic habitats. Specifically, although freshwater mammals are important as they are at the top of food web, research mainly focus on marine animals, while only few studies have been carried out on freshwater mammals. The main gap is that microplastics (MP) are completely understudied in freshwater mammals. Here, we reported the first evidence of the presence of anthropogenic particles (including MP) in coypu (Myocastor coypus)' faeces. Coypu is a rodent mammal inhabiting rivers and wetland areas, and we discussed our preliminary data suggesting the use of these tracks as possible future bioindicator of MP pollution in wetlands and freshwaters. We collected 30 coypu's faeces in "Torre Flavia wetland" nature reserve. Then, in laboratory, faeces were digested in 30 ml hydrogen peroxide (30%) for a week a 20 °C and analysed under stereoscope. All the suspected found MP were isolated in a petri dish, using FT-IR analysis to confirm the polymers. Overall, we recorded 444 natural and anthropogenic particles with most of items being fibres. FT-IR analysis of the 10% of the particles recovered revealed that 72% of them was not MP (mainly, polyethylene, polyethylene terephthalate, and polyamide). Also, the number of anthropogenic particles is not correlated with the faecal weight. Given that alien species, such as coypu, are widespread species, our results might have a great importance as these species and MP in faecal tracks may be used as undirect proxy of environmental bioavailability of MP pollution.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Environmental Monitoring , Feces/chemistry , Plastics , Rodentia , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis
11.
Sci Rep ; 11(1): 720, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436879

ABSTRACT

Plastics are to date considered one of the main detrimental drivers for the health of aquatic ecosystems, both in marine and inland waters. Regarding the latter habitat, it seems surprising how the plastic effects on benthic invertebrates are neglected since macroinvertebrates have a long tradition in the water quality assessment activities. In this context, we propose timely indoor observations on the exposure of caddisfly Odontocerum albicorne and mayfly Ephemera danica to various microplastic polymers (ABS, PET, PP, PS, PVDF). Three different experimental designs were performed on caddisflies and mayflies by exposing their larvae to natural and microplastic substrates. Our findings highlighted how microplastics affected both caddisflies in rebuilding its own case (after having removed the natural one) and mayflies burrowing. Particularly, all caddisflies rebuilt cases using the microplastic polymers provided instead of natural items only. Moreover, we provide the first evidence that mayflies burrow mainly in microplastic substrates rather than in natural ones. Our research highlights that macroinvertebrate larvae would use naturally occurring microplastics and this could be of particular concern in freshwaters with high contamination by plastics. Indeed, larvae appear to not necessarily perceive microplastics as a direct stressor. Further studies ought to be conducted to understand the chronic perturbation on larvae fitness and for example, on drift behaviour. Also, further investigations are needed to understand the potentialities of using plastics by benthic macroinvertebrates.

SELECTION OF CITATIONS
SEARCH DETAIL
...